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Research on failure in materials is an important task; it is particularly important to 
research forms of failure such as fast (dynamic) and viscous (involving considerable plastic 
;strain) [i]. In [2-6], an integral energy criterion was applied to the object as a whole 
without any constraints on the defect kinetics to derive failure conditions for thin-walled 
cylindrical and spherical shells made of viscoplastic material in the high plasticity range 
at strain rates of 103-105 sec -~ Theory and experiment indicated a dynamic plasticity peak 
.and provided a physical explanation for it. The integral criterion was derived from measure- 
ments on failure in geometrically similar objects loaded in a similar fashion [7-9]. There 
are marked scale effects (SE) of energy nature in failure, and this has been incorporated 
into the phenomenology of two-stage failure [7, 8], which enables one also to describe spall- 
ing, or failure at extremely high loading rates [7, i0, ii] and provides a physical explana- 
tion of catastrophic brittle failure in major pipelines with static loading [12]. 

Here we consider failure in thin-walled cylindrical shells made of a material showing 
not only viscosity but also work hardening. A differential equation is derived with fuller 
incorporation of expanding-shell motion. The breakup of a jet* of continuous material having 
a velocity gradient (another example of failure in the deep plastic region) can also be de- 
scribed by tlhe differential equation and solution derived for a shell. 

Formulation and Solution. Consider the motion of a thin ring of unit width having radius 
r 0 and thickness 6 o conceptually cut from the cylindrical shell. An observer moving radial- 
ly from the center with a particle of the material with speed v sees an adjacent particle 
on another radius at a distance@ r moving with a velocity proportional to the distance. In 
:fact, in dt the adjacent particle moves a distance (r + vdt)@ with velocity @v. Therefore, 
:from the observer's viewpoint there is a velocity gradient v/r in the tangential direction. 

We consider simultaneously a freely moving jet having a constant positive velocity gradi- 
ent u/m in the direction of motion (u is the velocity difference between the head and tail 
of the jet and m is the length). The gradients v/r and u/m cause the ring and jet to stretch 
and thin out. To simplify the discussion, we assume that v and u are constant. This assump- 
tion is equivalent to the energy dissipated in plastic flow being small by comparison with 
the total kinetic energy of the ring or the kinetic energy of the jet material relative to 
its center of mass.# For the~jet, the speed of the center of mass is independent of u, while 
in the ring the energy dissipation in plastic flow retards the basic radial motion. This 
,difference i:n the energy sources in plastic-flow dissipation must be borne in mind in deter- 
mining the limitations of the final solution. The velocity gradient in the ring is perpen- 
dicular to the radial motion, while that in the jet is parallel to it, but this has no essen- 
tial importance. The main kinematic difference is that all the phases of motion and failure 
in the sectors are synchronous for the ring, while they are sequential for the jet, beginning 
with the head parts. However, even this difference can be avoided with certain simplifying 
assumptions. As the ring (cylindrical shell) [6] and jet split up into a large number n of 
fragments (with the failure independent), without loss of generality it is sufficient to con- 
sider the ewolution of a ring sector or part of the jet of size Zi/n of the whole on the basis 
that all the processes are synchronous in such a part and the diameter is dependent only on 

*The first such attempt was made by S. V. Serikov at the Third All-Union Seminar on Explosion 
Physics (June 25-29, 1984, Krasnoyarsk). 
'~The assumption made in [2] for a ring is not too strong also for a jet such as a cumulative 
one if one bears in mind the reduction in the yield point of the material due to the initial 
heating to several hundred degrees, since the material undergoes shock compression as the 
jet is formed and then isentropic unloading. 
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time, not on coordinate. The latter assumption enables one to use the same equations to con- 
sider the deformation and failure of the ring and jet. 

We write the solution to the differential equation in the form f(E, ~) = 0, where e = 
(r - r0)/r 0 or (m - m0)/m 0 is the failure strain and ~ is the logarithmic strain rate. It 
is readily seen that ~ = v/r or u/m, i.e., coincides with the velocity gradient. By m 0 we 
denote the length of the part of the jet m at t = 0. We seek the function f as in [2] with- 
out imposing constraints on the failure stress a or the critical strain e. Following [2, 
7, 8], we determine f(e, ~) = 0 on the basis that the necessary and sufficient condition at 
the instant of failure is that the released elastic energy in the neighborhood of the failure 
section is equal to the work required to divide the material into parts: 

f qdV = %S, ( 1 ) 
V 

where q is the specific elastic energy (per unit volume), V is volume, ~ is the work of fail- 
ure per unit surface, and S is the failure surface. 

We assume that from the start of the motion (t = 0), failure begins in the middle section 
of the ring sector or part of the jet, namely the initiation of a defect formed from the start 
of plastic strain. If there is a more defective section in the immediate environment of this 
failure section, then that should be taken as the failure section. If this is not so, it 
is assumed that it cannot have a substantial influence on the failure in the section initially 
selected. We do, not attempt to describe the kinetics or enter into the details of the failure 
but instead perform estimates. Unloading waves propagate in both directions from the failure 
section through the material. The elastic energy released is consumed in the growth of the 
failure region. To define the V involved in this, we assume that the waves propagate through 
the moving material because of v/r or u/m (in [2-4, 6], this effect was neglected). We con- 
sider a section of the jet (or a section along the generator of the ring) at a distance x 
from the failure section. In time dt, the unloading wave travels a distance 

dx = (c + w)dt, 

where w = ~x is the displacement speed of the material with respect to the failure section 

and c is the speed of sound. Since e = ~o(l + eot)-l, 

then 

(2) 

where eo = e for t = t o , so 

since m/m0 or r/r0 = i + E. 

x = (c/eo)(i + eot) In (t -~ eot); 
dx/dt ~ c,[l -]- In (t q- ~)], 

(3) 

(4) 

We now turn to (i). The condition that the material is incompressible on deformation 
gives S = S0/(l + E) and dV = S0dx/(l + E); since the waves propagate in both directions, we 
rewrite (I): 

We substitute (4) 

+ ~)" 
0 

into (5) on the basis that dt = de/60 to get 

(5) 

S d8 __ ~'eo 
+q 11 q- l n ( i - ~  e)] ( tq-  e ) - -  (1 q- &)2c 

0 

(6) 
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Here q = yo212E (y = 3/4 for a ring [2] and y = i for a jet). 

is taken in a form more general than that of [2]: 

= % + k e + ~ l e =  o~{f @ ~ l n ( t  + e ) + ~ e ] ,  

w h e r e  $ = k / a o ;  p = q / o o ;  a n d  k i s  t h e  h a r d e n i n g  m o d u l u s .  Then 

(j2 
~ [, + ~ , ~ ( , + ~ ) + / 4 t  q = Y - ~  

On substituting (8) into (6), we get 

The plastic strain equation 

(7) 

(8) 

[~ + ~ ~ (~ + ~) + 6e] ~ i~ + ~. (~ + ~)i (~ + ~) -- ~, ~ : ~E/(~o~). 
O 

(9) 

On solving (9) we get 

2 -}- 3e --  In (i J- s) @ e {2~ts (2 + 3~) --  2~t (l @ 3~) In (1 -J- e) - -  

(io) 
~0. 

Comparison with Experiment. Measurements have been made [2] on the dynamic plasticity 
of a thin shell made of mild steel. We put ~ = 0 in (i0) to get an equation analogous to 
(4) of [2] but with allowance for the tangential flow: 

(ii) 

For E << i, (ii) coincides with (5) from [2], which shows that the solution is more general. 

Figure i shows the observed g(log6) data, which are closely described by (4) from [2] 
for ~ = 1.67.10 -4 sec and p = 0.85.10 -4 sec (line 4). Equation (ii) with the same ~ and 
corresponds to line 5, while lines 6 and 3 have been drawn for a = 1.5.10 -4 sec and 2.0.10 -4 
sec (~ = 0.85.10 -4 sec). As would be expected, the more accurate solution does not alter 
the form of ~(log6), but ~ must be increased to about 1.9.10 -4 sec with the same D to de- 
scribe the experiments. 

Solution Analysis. We consider the complete solution (I0). The work hardening alters 
the E(log6) curve, but the plasticity peak found in [4] persists. The graph for (i0) with 

= 8 (k = 0.01E), ~ = 1.67 .10 -4 sec and p = 0.85.10 -4 sec is indicated by line 2. As ~ in- 
creases, there is increased skewness in line 2 with respect to the vertical through the maxi- 
mum, and the maximal $ and 6 increase. In the absence of the viscous term (p = 0) in (8), 
(i0) simplifies to 

~F 

q~ 

0,; 

! 

i / i o o \  /!,, 
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Fig. 1 
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eo~ = t q- In (t -t- 8) -}- q- ~ [ln(1 q- 8)12 q- ~ [In (1 q- 8)] a q- ~ [ln (I q- 8)14. (12) 

If there is no work hardening (D = 0 and $ = 0), with the result that the plastic flow stress 
is constant and o = o0, f(e, ~) becomes 

e~ = l n ( l  ,~- 8) l q -  l n ( t  q-e) . ( 1 3 )  

G r a p h s  f o r  ( 1 2 )  w i t h  ~ = 1 . 6 7 . 1 0  -4  s e c  a n d  ~ = 8 a n d  f o r  ( 1 3 )  w i t h  t h e  s a m e  a a r e  s h o w n  b y  
lines 8 and i. 

One can imagine a material not subject to viscous work hardening (q = 0) and having no 
strength for low strains (o 0 = 0), but which strengthens during strain (k # 0). For such 
a material f(~, ~) is given by (12): 

�9 I 1 e = •  q-~) -3-q--~ [ln(! q-~i] 3 , ( 1 4 )  

w h e r e  • = $ 2 / ~  = k 2 y c / ( E X ) .  L i n e  7 c o r r e s p o n d s  t o  ~ = 3 8 . 3 - 1 0 4  s e c  -1  (~ = 8 a n d  a = 1 . 6 7 .  
i0- 4 sec). 

It follows from (12)-(14) that the plasticity peak is absent if there is no viscous term. 
If the material is insensitive to the strain rate, such as aluminum and certain of its alloys, 
there is no plasticity peak. Also, e increases monotonically as 6 increases. 

Interest also attaches to the particular case where o 0 = 0 and k = 0 in (7), while q # 
0, which corresponds to the behavior of liquids, or to that of media whose static strength 
is close to zero but which acquire a resistance to shape change at high strain rates, namely 
a viscous strength component.* Then (i0) simplifies to 

2~ = [(3/2)~ + 3~ - In (i + 8)]~ (15) 

where 8 = ~/D2 = %E/(ycq2). Line 9 corresponds to (15) with $ = 2.31.104 sec -I (~ = 1.67. 
10 -4 sec and p = 0.85.10 -4 see). The form of (15) explains the behavior of a liquid: the 
rapid breakup in a liquid jet, and the capacity of a liquid to break up into finely divided 
fractions on shock loading. Another interesting point is that it is possible to blow soap 
bubbles only slowly, namely at low ~. 

From (i0) we can also consider the case o 0 = 0 but k ~ 0 and ~ # 0; f(e, ~) is quadratic, 
so the e(6) curve will have a peak, as for (i0) and (ii). 

Conclusions. These results on the dynamic dependence of g for failure on ~ in the deep- 
plasticity range relate to a hypothetical equation of state of the form of (7) for constant 
o0, D, and k, and also v and u, which cannot give an adequate description of failure if the 
equation of state is far from (7). A more correct description should also incorporate factors 
such as heating due to the plastic strain, and thus alteration in o0, X, etc., which is par- 
ticularly important for e of 0.5 and more. Also, the internal friction increases with e, 
so the extent of the region around the growing crack where elastic energy can be taken up 
is reduced. 

However, even with these reservations, the closed analytic form obtained for f(e, ~) 
enables one to examine the solution in some particular forms of the equation of state, and 
especially the description of [2] and that here of the plasticity peak for mild steel, or 
the description of failure in uranium shells given in [3], or of other materials in [4], and 
the derivation of ~, p, 6, and ~ for high-speed failure in the plastic region; this all in- 
dicates that a physically based integral energy criterion provides a correct way of describ- 
ing this form of failure. The same conclusion follows from comparing various shell failure 
criteria, including the criteria of [14, 15] based on Taylor's approach [3, 4]. 

Since the integral energy criterion describes not only dynamic failure with extensive plas- 
ticity as above, but also failure in the elastic range at extremely high loading rates such 

*The values of X for various liquids do not differ very greatly from those for solids [13] 
and, therefore, their behavior in failure is determined by o and any variation in this with 
the strain rate. 
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as spallation [7, i0] and failure under static loads in the elastic range (major pipelines 
[12]), we consider that the two-stage energy approach proposed in [7] can be the basis for 
a general theory of failure. 
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